来源:高分子科学前沿|
发表时间:2023-11-21
点击:2540
化学吸附剂是当前分离纯化CO最有效的方法之一,但其中的开放金属位点(open metal site, OMS)存在脱附困难、H2O/O2稳定性低等问题。为此,中山大学化学学院的张杰鹏教授提出了准开放金属位点(quasi-open metal site, qOMS)的概念,通过金属位点的柔性控制同时实现了高容量、高选择性、低脱附能耗和高稳定性,为吸附分离应用提供了新的思路。2023年11月13日,相关成果以“Quasi-open Cu(I) sites for efficient CO separation with high O2/H2O tolerance”为题,发表在Nature Materials期刊上。
CO是重要的化工原料和废气,也是一种剧毒气体。例如,0.2ppm的CO就足以使燃料电池的Pt电极失活。因此,CO分离与纯化对于工业和环境安全具有重要意义。CO和相关气体的沸点很低,而且CO和N2具有几乎相同的物理性质,因此蒸馏分离能耗极大,物理吸附也很难分离。不过,CO可以和金属离子配位,利用化学吸附实现超高选择性。但是,因为金属离子的强配位作用,传统化学吸附剂常表现出难脱附和稳定性低(尤其对H2O和O2)的问题。开孔型柔性吸附剂的S型吸脱附等温线能够有效解决脱附困难的问题,但是其低压不吸附的特点会导致泄漏问题。
图1:OMS和qOMS的吸附行为。(a)传统OMS具有空缺配位点;(b)具有隐藏配位点的qOMS;(c)具有屏蔽配位点的QMS(直接取代型);(d)具有屏蔽配位点的qOMS(间接取代型);(e)开孔柔性的热力学;(f)开孔协同性对等温线形状的影响;(g)刚柔性程度和开孔压力及吸附行为的关系。
在上述背景下,作者提出了qOMS的概念,即金属离子本身不具备空缺配位点,需要目标分子诱导金属离子/多孔框架结构变化,进而产生/暴露配位点完成化学吸附,这需要精确控制吸附剂的柔性(图1)。为了验证这一思路,作者选择了经典的基于Cu(I)的金属多氮唑框架MAF-2(J. Am. Chem. Soc. 2008, 130, 6010)及其衍生物进行研究。单组份吸附测试表明,这类材料对CO都表现出S型等温线特征,可有效降低脱附能耗(图2)。原位结构和光谱表征证实了CO的吸附机理,即框架中的Cu(I)由原来的三角形配位转变为四面体配位模式(图3)。而且,这些材料对其他相关气体及水气均表现出弱的物理吸附,体现了qOMS对非目标分子的屏蔽作用。
图2:单组份吸附行为。(a) CO吸附等温线;(b) CO吸附焓;(c) CO吸附动力学;(d) MAF-2ME的CO、O2、N2、CO2、CH4和H2吸附等温线。
图3:CO吸附机理。(a-c) CO化学吸附诱导的可逆结构转变;(d)原位红外光谱。
图4:混合组分室温常压吸附分离行为。(a) MAF-2E的1:1 CO/N2穿透曲线;(b) MAF-2F-CO的1:1 CO/N2穿透曲线;(c) MAF-2ME的1:1 CO/N2穿透曲线;(d) MAF-2ME的1:99 CO/H2穿透曲线;(e)MAF-2ME在干燥和潮湿条件下的1:1 CO/O2穿透曲线;(f)MAF-2ME在潮湿条件下的1:1 CO/O2循环分离结果。
该论文提出的将控制吸附剂柔性和化学吸附结合的qOMS以及调节开孔压力避免泄漏的概念有望被推广至其他吸附分离体系。
值得指出的是,2004年以来,该课题组研究MAF-2衍生物的合成、结构与功能已发表了10篇论文(包括3篇JACS、3篇Angew. Chem.、1篇Adv. Funct. Mater.、1篇Natl. Sci. Rev.、1篇Nat. Mater.和1篇Cryst. Growth Des.综述)。
封面来源于图虫创意
“本文由新材料在线®平台入驻媒体号高分子科学前沿提供,观点仅代表作者本人,不代表本网站及新材料在线®立场,本站不对文章内容真实性、准确性等负责,尤其不对文中产品有关功能性、效果等提供担保。本站提醒读者,文章仅供学习参考,不构成任何投资及应用建议。如需转载,请联系原作者。如涉及作品内容、版权和其它问题,请与我们联系,我们将在第一时间处理!本站拥有对此声明的最终解释权。”