来源:中国科学院|
发表时间:2023-12-11
点击:3364
文章来源:金属研究所
太阳能光催化分解水制氢是获取绿氢极具潜力的技术,其走向应用的关键是发展高效稳定的半导体光催化材料。铁电光催化材料(例如PbTiO3、BiFeO3、Na0.5Bi0.5TiO3和Bi3TiNbO9)由于具有能够促进光生载流子分离的内建电场而广受关注。其中,Bi3TiNbO9是一种奥里维里斯(Aurivillius)型层状铁电光催化材料,具有沿a轴方向的退极化场,该内建电场源自(Bi2O2)2+层中的铋原子和(BiTiNbO7)2-中的氧原子发生偶极相互作用而产生晶格畸变。在退极化场驱动和层间扩散约束下,电子倾向于富集在{001}面,而空穴富集在{110}面,从而实现了光生电荷和反应位点的空间分离。然而,Bi3TiNbO9中产生的光生电子沿层间(c轴)传输的能垒较大,光生电荷分离不足,限制了该材料的光催化全分解水活性。
中国科学院金属研究所沈阳材料科学国家研究中心刘岗团队前期围绕PbTiO3铁电材料研究了铁电特性在光催化分解水中的作用,同时对层状铁电材料展开了深入探究,发现将Bi3TiNbO9片状颗粒的表面终端层从(Bi2O2)2+层调变为(BiTiNbO7)2-层能够实现稳定地光催化全分解水。在此基础上,该团队与合作者近期提出了利用梯度W掺杂在Bi3TiNbO9片状颗粒的c轴方向引入额外的内建电场助力光催化全分解水。相关研究成果以Gradient tungsten-doped Bi3TiNbO9 ferroelectric photocatalysts with additional built-in electric field for efficient overall water splitting为题发表于《自然-通讯》(Nature Communications)。
相关研究工作得到国家重点研发计划、国家自然科学基金委、中国科学院稳定支持基础研究领域青年团队计划等项目的资助。
图1 光生电荷转移行为。光生载流子沿ac面的转移示意图(Ps-铁电极化,E-额外的内建电场):(a) Bi3TiNbO9,(b) Bi3TiNbO9-W。Bi3TiNbO9(青色点)和Bi3TiNbO9-W(紫色点)晶体的表面光电压光谱:(c) 稳态,(d) 瞬态。
图2 光催化全分解水的活性和稳定性。(a) 不同W掺杂浓度的Bi3TiNbO9-W的活性比较。光催化全分解水稳定性测试(λ≥300 nm):(b) Bi3TiNbO9,(c) Bi3TiNbO9-W,(d) Bi3TiNbO9-W-PL(以钙钛矿层为截止面)。
[声明]本文来源于互联网转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性、准确性等负责,尤其不对文中产品有关功能性、效果等提供担保。本站文章版权归原作者所有,内容为作者个人观点,本站提醒读者,文章仅供学习参考,不构成任何投资及应用建议,如需转载,请联系原作者。如涉及作品内容、版权和其它问题,请与我们联系,我们将在第一时间处理!本站拥有对此声明的最终解释权。